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Abstract-Reference is made to non-associative, time independent infinitesimal elastoplasticity with
non-associative flow rule. The non-associativity is restricted to the volumetric component of the
plastic flow. Loss of strong ellipticity is shown to occur before the snap-back modulus is reached.
An analytical solution for the condition of loss of strong ellipticity is obtained for the best chosen
comparison solid of the family introduced by Raniecki (1979. Bull. Acad. P%n. Sci. XXVII, 391­
399). Finally. this solution is shown to coincide with the loss of strong ellipticity in the comparison
solid "in loading". Therefore. for volumetric non-associative flow-rules. strong ellipticity is lost
simultaneously in the best chosen comparison solid of Raniecki and in the comparison solid "in
loading".

I. INTRODUCTION

The condition ofstrong ellipticity (S-E in the following) represents a local stability criterion
that excludes strain localization (Hill and Hutchinson, 1975; Rice, 1976; Rudnicki and
Rice, 1975; Vardoulakis, 1976) but may still be verified even when the second order work
is not positive definite (Maier and Hueckel, 1979; Villaggio, 1968). The S-E condition
requires the positive definiteness of the acoustic tensor corresponding to the constitutive
operator. This condition, well known in the context of finite elasticity (Truesdell and Noll,
1965), has been investigated in the context of plasticity mainly for the case of the associative
flow law [see, e.g. Hill (1962) and Thomas (1961)] and only recently for non-associative
flow-rules (Ryzhak, 1987).

This paper is addressed to the infinitesimal theory of (inviscid) elastoplasticity in the
presence of deviatoric normality, Le. only the volumetric component of the plastic flow is
assumed to be non-associative. This context has been widely explored from the point of
view of local and integral stability criteria (Bigoni and Hueckel, 1990; Loret et al., 1990;
Mr6z, 1963; Needleman, 1979; Nemat-Nasser and Shokooh, 1980; Rudnicki and Rice,
1975; Rudnicki, 1977). In this paper it is shown that S-E is necessarily lost in the comparison
solid "in loading" before the snap-back plastic modulus is reached. Moreover, an analytical
solution is found for the loss of S-E in the best chosen comparison solid of the family
introduced by Raniecki (1979) [see also Raniecki and Bruhns (1981)]. By using this solution
and bearing on the hypothesis of deviatoric normality, it is finally shown that the loss of
S-E occurs at the same value of the (critical) plastic modulus for the comparison solid "in
loading" and for the best chosen comparison solid of Raniecki's (1979) family. A simple
application to the model of Rudnicki and Rice (1975) closes the paper. The case of generic
non-associative elastoplasticity is dealt with elsewhere (Bigoni and Zaccaria, 1992).

2. PROBLEM FORMULATION

The notation of modem continuous mechanics is used (Gurtin, 1981). A tensor A is a
linear transfonnation over a three-dimensional inner product space 1"'. Lin denotes the set
of all tensors and Sym the subset of symmetric tensors. A fourth-order tensor A is a linear
transformation over Lin (or Sym). The symbol ® represents the tensor product over an
inner product space (including Lin). The symbol (' ) denotes the McAuley brackets, i.e.
the operator IR -IR+ u {OJ, IX - (IX) = sup {IX,O}.

2123



2124 D. BIGos) and D. ZACCARIA

Reference is made to the incremental elastoplastic constitutive law with two tensorial
zones. relating the rate of Cauchy stress t to the velocity of deformation D:

. (D'iE[Q]) _
T = E[D]- -~--~([[QI + 3-;1\:1).

'I
( I )

where Q is the yield surface gradient. 'I the plastic modulus. I\: the elastic bulk modulus. ~

specifies the degree of non-associativity and IE is the elastic tensor. assumed isotropic and
positive definite:

IE = i.I ® 1+2,uL (2)

in which U is the fourth-order identity tensor and i. and ,u are the Lame moduli related to
the bulk modulus by 31\: = 3i. + '2J.1.

It is worth noting. from the constitutive equation (I). that the case of associative
plasticity is recovered for ~ = O. Moreover. the plastic modulus 'I is related to the hardening
modulus It by:

'I = It + Q 'IE[Q] + 3~1\: tr Q. (3)

When f, is positive. the hardening regime is described. whereas negative values of It model
the softening behavior. When 'I is zero the "snap-back" modulus is reached and negative
values of 'I descrihe the sub-critical behavior [in the sense defined by Maier and Hueckel
(1979) and Borre and Maier (1989)].

On the basis of the constitutive equation (I). the incrementally linear comparison solid
"in loading" is defined through the introduction of the fourth order constitutive tensor N :

(iE[QI + 3~1\:1) ® iE[Q]
N=iE- ...

'I
(4)

The family of comparison solids introduced by Raniecki (1979) depends continuously
on a strictly positive scalar parameter " and is specified by the fourth-order constitutive
tensor M as follows:

IE[(I +y)Q+~lj ® [[(I +y)Q+~lj
M(y) =[------...-.----.

41'9
(5)

The acoustic tensors A:,,(n). AM(n) and Adn) are now introduced corresponding to
the solid (4). to the family of solids (5) and to the elastic solid. respectively:

AM (". n)m = M(y)[m ® njn. Adn)m = lE[m ® njn. (6-8)

Throughout the paper. when misunderstandings arc excluded. the dependence on n of the
acoustic tensors (6)-(8) will be omitted.

For the comparison solid "in loading" (4) the condition of strong ellipticity is written
as:

(9)

Analogously. for the generic solid of the family (5) introduced by Raniecki. the condition
of strong ellipticity reads:

( 10)

Note that the comparison theorem of Raniecki (1979) implies:
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(11)

Finally, it can be observed that, due to the positive definiteness of IE, the elastic acoustic
tensor is always positive definite.

3. CRITICAL PLASTIC MODULI FOR THE LOSS OF S-E

The condition of loss ofstrong ellipticity is expressed in this section in terms ofa critical
value ofthe plastic modulus for the comparison solids "in loading" and for Raniecki's family
of comparison solids. It is also shown that the loss of S-E always occurs before the snap­
back value of the plastic modulus is reached.

3.1. Comparison solid "in loading"
The condition of loss of S-E may be obtained, for a given n, by equating to zero the

solution of the following constrained minimization problem:

min {m' AE(n)m -m' IE[Q]n- 3e"m' n},
",e"t'"

subject to:

m 'IE[Q]n =,.

By introducing the function

!l' (m, fI, X) = m' A"m - (I - x)m 'IE[Q]n - 3e"m' n- Xfl,

where X is a Lagrangian multiplier, the problem (12)-(13) becomes

min 2'(m, X,flN) = 0,
ItE1.XER

(12)

(13)

(14)

(15)

in which fiN denotes the critical value of the plastic modulus for the loss of S-E, at a given
value of n. The solution of (15) (see Appendix A) is given by:

mN(n) = WI +xN)ma +ven], flN(n) = HO +xN)ma ' AEma +tien' AEma ],

xN(n) = J(m. +tien)' AE(ma +tien)/m.· AEma ,

where:

(16,17)

(18)

ma =Ai 'IE[Q]n,

A substitution of (18) into (17) yields:

_ I +v
v=--.

I-v
(19,20)

Therefore, the Cauchy-Buniakovskii-Schwarz inequality implies that

and

(22)

(23)

In a continuous loading path, S-E is lost when the plastic modulus becomes equal to
the critical one, that corresponds to the maximum of ,N(n) over all directions n. Therefore.



2126 D. BlooNl and D. ZAcCARIA

using the expression (21), the critical value of the plastic modulus ?~ for the loss of S-E is
obtained as the solution to the constrained maximization problem:

subject to

?~E = max ?N(n),
ae 1"

n"n=l.

(24)

(25)

The direction for which ?~E is maximized will be denoted in the following as n~.

If (19) is substituted into (23), the condition for which (23) is satisfied for every n
yields:

9~E = 0, =- 3 ~ E (0, I) : Q = - ~~I. (26)

Therefore, loss of S-E may correspond with the snap-back modulus 9 = 0 if and only if
tensor Q is spherical and the plastic flow has the same direction in the stress space as the
yield surface gradient, but is directed inside the yield function. This kind of flow rule is
usually (Runesson and Mroz, 1989) not accepted and therefore loss of S-E is ensured before
the snap-back modulus is reached.

3.2. Comparison so/ids oj the Jamily introduced by Raniecki
The condition of loss of S-E may, for a given n, be obtained by using a procedure quite

similar to that of the previous case. The following result is obtained:

mM(y,n) = (I +y)ma+v~n, (27)

and the Lagrangean multiplier proves to be, in this case, equal to I.
Using the expression (28), the critical value of the plastic modulus 9 M(y) for the loss

of S-E in the generic solid (5) is obtained as the solution of the constrained maximization
problem:

subject to

9M(y) = max9'M(y, n),
lIe1"

n"n=l.

(29)

(30)

The S-E condition is lost in all solids of the family introduced by Raniecki at the minimum
value 9~~ of 9M(y):

M • f M9'SE = In 9' (y).
I'EA+

(31 )

The val ue YSE of y that satisfies (31) defines the "best chosen comparison solid" of Raniecki.
The direction for which 9~(Y' n) is first maximized in respect to n and then minimized in
respect to y, will be denoted in the following as n~E·

Now, if 9M(y, n) is minimized with respect to y, at a constant value of n, it is readily
obtained that 9'M (y, n) possesses a minimum in correspondence of y = XN (n) and:

(32)

Thus the problem (29)-(31) can be written in the form :
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9~ =: inf max9M(y.n). subject to n'n =: I,
7ER+ .e.-

whereas the problem (24)-(25) can be written in the dual form :

N • M
?SE =: max mm 9 (y, n), subject to n' n =: I..e.- yER+

2127

(33)

(34)

4. ANALYTICAL SOLUTION FOR THE CRITICAL PLASTIC MODULUS FOR LOSS OF S·E IN

THE COMPARISON SOLIDS OF RANIECKI

In this section an analytical solution for the loss of S-E in a generic solid of Raniecki
is derived. The solution is expressed in terms of a critical value pM (y) of the plastic modulus
and a critical direction nM(y).

By introducing the Lagrangean multiplier '1, the constrained maximization problem
(29)-(30) is reduced to:

max {pM(y,n)+'1(n·n-I)}.
ne""

where $1M (y, n) can be written, substituting (2) into (8), as:

(35)

in which

P =: (I +y)Q+el. (37)

The problem (35) can be solved (see Appendix B) in a similar manner as in the case of
strain localization solved by Bigoni and Hueckel (1991). The solution of problem (35) is
given by one of the following directions of n (expressed in components in the principal
reference system of Q) :

(38)

for every permutation (k, I, m) of (1,2.3), where:

in which Qk. Q, and Qm denote the eigenvalues of Q. Note that if QI =: Qm' the expressions
(35) along with the following still remain valid as limits IX I - + 00 and IXm - - 00 or
IX,- - 00 and IXm - + 00. The problem (35) is reduced to:

(41)

where:

(42)

and



2128 D. BIGOM and D. ZACCARIA

v., ")
d("I. k ) = Q'Q+ 1-2t, tr" Q-(I+r)Qk"

{
1+1'

JI(y.k) = d("I.k)+ ~ 1-2t, (2 tr Q+ 3~) - (I +l')(2Q. +~)

_v[<am
) (2(Qm +t'Qd+(1 +t')~)+ <XI) (2(QI +l'Qk) +( I +l')~)J},

am XI
(44)

(45)

in which if one of the a.(i = I.m) parameters is zero. <a,>ilX, is to be replaced by 0 or I
indifferently, This indifference implies that the functions IR+ -+ R y -+ ?M(y.k), k = 1,2,3,
are continuous and therefore the function (41) also results to be continuous.

It is worth noting that the functions .r:1, Jd. ((;' are unchanged by the choice of I and m.
Moreover. by comparing (42) with (2H). it is seen that ,c.J and J8 are given. in correspondence
of (38). by:

where n(k) is the solution (38) and m.(k) = m.(n(k».
From (46)-(47) it is concluded that:

.(1 (y, k) ~ 0 and :!4(y. k) ~ O.

(46)

(47)

(4H)

Moreover. from (43)-(45) it is seen that the functions .('/, :!4 and (6' are independent
of'l inside the following intervals of IR + :

(51)

From (49)-(51). note that the dependence on k is through :XI and ~ and therefore the
following implications hold true:

i'E..1 fO•II (k) => -al> -am E [0. I], l' E.'; _",.o,(k) => -IXI E ( - 00,0], -am E [I. + (0),

(52, 53)

(54)

In the case where tensor Q has one multiple eigenvalue. all the above formulae stilI
hold although they may be written in a simpler way. Moreover, if, for example, Ql = Qm(41)
reduces to:
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and the maximization is not requested.
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(55)

5. COINCIDENCE OF CRITICAL PLASTIC MODULI FOR LOSS OF S-E IN THE COMPARISON

SOLIDS

The coincidence between the critical plastic moduli for the loss ofS-E in the comparison
solid "in loading" and in the best chosen comparison solid of Raniecki will be proved in
the following. The result. which follows from solving problem of Section 4. is obtained with
a proofing technique that. due to the hypothesis of deviatoric normality, is not based on
the restrictive conditions of convex analysis [as in Bigoni and Zaccaria (1992)].

5.1. Explicit solution for loss ofS-E
The function ,M(y) defined by (41) is formed by pieces of functions (42) in which the

coefficients d ~ O. :!4 ~ 0 and rc are constant. i.e. the function is the finite union of pieces
of functions in the form :

If .tt.;j #- O. the function (56) reaches a minimum in the point

f = J;j/.tt.

Moreover. the function ,M(y) will be shown to be coercive:

(56)

(57)

(58)

and to have a continuous first derivative. Thus 9 M (y) has a minimum in correspondence to
the value lSI: of I in the form (57). where

(59)

with k satisfying

(60)

Therefore. the determination of the best chosen comparison solid is simply reduced to
finding among all (maximum 9) values of y in the form (57), the value YSE that satisfies
(59)-(60).

In order to prove the coercivity of the function ?M(y). let us note that this function
necessarily has the form (56) in a neighborhood of + 00 and 0, therefore:

lim 9 M (y) #- + 00 =>.r:i = 0,
y-+~

and, by the definition (41) of 9 M (y):

d=O=>[slt'(y,i) =0, i=I,2,3].

(61)

(62)

If (58) does not hold. (61) and (62) imply the condition slt'(y, i) = 0, i = 1,2.3, that, using
the definition (43) of d, leads to a contradiction. An analogous scheme can be used to
prove the coercivity in respect of y -. o.
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In the following, the continuity of the first derivative of the functions/"\" k) and
JlM(y) is shown in two Lemmas.

Lemma I. The functions IR+ -+ IR, y -+ JlM(y. k). k = 1, 2, 3 hat'e continuous first
deriratires.

Proof From the definition (42), the continuity of the function IR+ -+..$. y -+?M(}',k)
is certain for values ofy internal to the intervals (49)-(51). Now, the frontier points of the
intervals (49)-(51) are to be checked. Only the intersections between the intervals (49) and
(50) and (49) and (51) are to be considered, in fact:

(63)

unless QI = Qm' which implies .It' ~ >:.0) = .It'. >:.01 = IR +. Let us suppose

(64)

therefore. from (52)-(53) it is concluded that iXl = 0 and from (39) that:

(65)

By deriving the function (42) with respect to }' on the intervals .1't' -".nl and .1'(1).11 and by
substituting (65) into the obtained expressions, continuity is readily verified. The case of
'7 E .Ii" ".nl n.l (11.11 is quite analogous.

Lemma 2. The function IR' -+ IR. y -+ yM (y). defined hy (41). has a continuous first
deril'llti/'e.

Proof In the case where the tensor Q has one multiple eigenvalue, Lemma I. along
with (55), ensures the validitiy of Lemma 2. In the following, only the cases of distinct
eigenvalues are considered. The function (41) is, by definition. the union of pieces of the
three functions .?M (y, i) (i = 1.2.3). These functions arc continuous and, from Lemma I.
have continuous first derivatives. Therefore a possible point of discontinuity coincides with
an intersection point yoI' two functions y -+ /'1 (y.p) and y -+ ?M(y.q) (with p # q), where
:1 M (j, p) = /,1('7, q). Now. all the possible points of intersection are examined.

In Appendix C, it is shown that the points of the interval

(66)

are points of intersection between JlM(y, p) and 9 M(y, q) and this interval is empty or contains
infinite points. Therefore. the first derivative of functions JIM (y, p) and JIM (y, q) coincide in
the interval.1'r~'(,.01' including its frontier points.

In Appendix D it is shown that intersection points not belonging to the interval (66)
satisfy:

(67)

where (t, p. q) is a permutation of (I, 2, 3). Taking into account the definition (41) of ,?M (y).
(67) implies that the intersection points do not belong to the function JIM (y).

5.2. Concidence of the critical plastic moduli for the comparison solids
The critical plastic modulus for the loss of S-E in the best chosen comparison solid of

Raniecki coincides with the critical plastic modulus for the loss of S-E in the comparison
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solid "in loading". In order to prove this result. let us note that a substitution of (46)-(47)
into (57) and a comparison with definition (18) yields:

By definition (24) of prE, the following inequality holds true

N N( N)..... N(nM )
PSE = P nSE ,;;:; P SE,

N ~ M(. M) _ M
PSE ,.... P (SE, nSE - ?SE'

(68)

(69)

(70)

The comparison theorem of Raniecki implies (II) and thus P~ ~ P~E' Therefore, from (70)
it is concluded that ?~ = ?~E'

6. EXAMPLE: THE RUDNICKI AND RICE MODEL

An application is made to the model proposed by Rudnicki and Rice (1975), in which
the Drucker-Prager yield function is used in conjunction with a non-associative flow rule,
allowing for deviatoric normality. For this model, the yield surface gradient results in the
form:

dev T IX

Q = (21
2
)1/2 + 31, (71)

where IX is a non-negative constitutive parameter, dev T is the deviatoric stress and J 2 is its
second invariant. With the procedure shown in Section 5, the critical hardening modulus
ASE for the loss of S-E has been evaluated for all the stress points lying on the generic
deviatoric section of the yield function. In Fig. I, the stress point is identified through

Fig. I. Deviatoric section of the yield function with Lode's angle.
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Fig. 2. Critical hardening modulus (normalizcd in respect to the clastic shear modulus) \'S Lode's
angle (in degrees).

Lodc's angle [}. Figures 2. 3 and 4, refer to thc cases of !l = 0.3. 0.6. 0.9 and /' = 0.3. The
range of the parameter ~ is - 0.3-0. In the case ~ = 0, the associative flow rule is recovered
and therefore the loss of S-E coincides with the loss of ellipticity and the same results as in
Rudnicki and Rice (1975) are found. In particular. in the case of the associative flow rule.
the critical hardening modulus is never positive (i.e. loss of S-E is excluded in the hardening
regime), whereas. for the non-associative flow rule adopted in this paper. loss of S-E occurs
in the softening as well as in the hardening regime. A comparison with the values of the
critical hardening modulus for the loss of ellipticity reportcd by Rudnicki and Rice (1975)
rcveals that loss of S-E occurs, for ~ i= 0, well before loss of ellipticity. Finally. it is
interesting to note from Fig. 2 that the non-associativity of the flow rule does not necessarily
yield. for a given stress state, a critical hardening modulus greater than that corresponding

C)
0.2

...........
Q)
CI1

..r:::. 0.0

-0.2

-o.~

-0.6

-0.8
20 40 60

Fig. 3. Critical hardening modulus (normalized in respect to the clastic shear modulus) vs Lodc's
angle (in degrees).
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0.4
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-O.ll

(--0.30

(--0.20

(--0.10

(-0.00

-1.2 +---...,.---...---r---,-----,
20 60

Fig. 4. Critical hardening modulus (normalizL-d in respect to the elastic shear modulus) vs Lodc's
angle (in degrees).

to the associative flow rule. In fact. in the case of a = 0.3 and .9 = O. kSE = -0.093 for
~=OandksE= -0.106for~= -0.1.

7. CONCLUSIONS

In this paper. it is shown that in a continuous loading path of an c1astoplastic solid
with deviatoric normality. strong ellipticity is lost before the snap-back modulus is reached.
An analytical solution for the critical plastic modulus for the loss of strong ellipticity is
derived for the best chosen comparison solid of Raniecki (1979). This solution is shown to
coincide, under the hypothesis of deviatoric normality. with the solution for the loss of
strong ellipticity in the comparison solid "in loading".
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APPENDIX A

Solution oj the comtrainc'd minimi:ation problcm (15)
By using the eltpression (2) of the elastic tensor. the conditions of stationarity of the function (14) arc:

2A f m - (I - xH2JIQn + An tr Q) - 3~l(n == O.

and the condition 2'(mN• 'IN. XN) == O. taking into account (A2). is:

'I == m' (:!jLQn + An tr Q). (AI. A2)

(A3)

From (A I). using (2) in the cltpression (8) of the clastic acoustic tensor. (16) is obtained. By substituting (16)
into (A3) thc Lagrangcan multiplier (18) is obtaincd. Substitution of (16) into (A2) gives (17).

APPENDIX R

Solution of till' problem (35)
Problem (35) is rewrittcn in the equivalcnt form:

malt {y"·(i'.a)+'1(E,tI,-Il}.
.~';J

where. from eqn (36)

M G {. I • 21' I' J .}
'I (y.a)==~-- 2P;II'-'t---(P,tI,)'+-t- P,II,trl'+('1 .)(1 ')tr"P.

:.,' -ll -L' -t' -_t'

(RI)

(62)

in whieh the indices (summed between I and 3) denote components in the principal reference system of Q and
the components a, arc defined as:

(B3)

The set 9' in (BI) is therefore defined as:

9' = {aelR'/(3nelR')(n'n = t and tI, == n,l. 1 = 1.2.3)}. (B4)

In Fig. At. the sct !iI is represented. in the principal reference system of Q. along with the vectors a corresponding
to the different intervals (49)-(5\).

Stationary points inside the set 2 correspond to the conditions:

I-t,
P/P,a,- '4G'I = (I-I')P}+I'PJ tr P (j = 1.2.3).

Solutions of the system (B5)-(B6) arc only possible if:

P'=Pm or p,=p. or Pm=p.·

Conditions (67) arc fully equivalent to

Q, = Qm or Q, = Q. or Qm = Q•.

E,a, == I. (B5. B6)

(B7)

(B8)

When one of the equations (68) holds. e.g. Q, == Q. i' Qm' the solution of (B5)-(B6) eltists if and only if
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Fig. A I. Representation of the set 9 in the principal reference system of Q.

0< -IX, < I.

2135

(B9)

where IX, is given by (39). In this case. the function,"(y.•) is constant on the line a, = -IX.. where it assumes its
e:\tremum value and thus. the absolute ma:\imum of 9'4(y••) can be found on a point of the frontier of the set ':I.

Therefore. the ma:\imum of (35) can in any case be found on the frontier of 9. In order to find the ma:\imum
of (35) on the frontier of ~. let us assume a. =o. If a. =0 is substituted into (B2) the stationary conditions on
the frontier of ~ are:

(BIO. BII)

The solutions of (810)-(811) are:

a, =0, am = I or am = O. a, = I, if P, = Pm. (BI2)

l
a, = -2.. am = -lXm

al = O. am = 1

a, = I. am =0

if 1X,.lXmel-I,O)

if IX, ~ 0

if IX,:E;-I

(BI3)

Solutions (BI2)-(BI3). using (B3). yield (38). E:\pression (38). substituted into (36) gives:

'4 G , G [<a",) , <IX,) '] G [Ll 2 ']'I (t,k)=-ij;(l+Ll)P'-
2Y

(l_V) ~(Pm+VP')·+--;,-(PI+LlP'>·+21 1_2v tr P+trP-.

(814)

Equation (42) is obtained by substituting the definition (37) of Pinto e:\pression (814).

APPENDIXC

For two different values p and q of k. function (42) (see also 814) assumes the same values in the interval:

(CI)

Moreover. the interval (C I) is empty or contains more than one point. Note that the two functions 9'4 (Y. p) and
/" (y, q) have the same derivative (in all points and) at the extreme points of interval (C I), since they are coincident
in the interval (CI).

Proof IfyeJ(!",.Oj' from (CI) and (53)-(54) follows iX,(k = q) ~ 0 and 1X.(k =p) ~ O. It is therefore easily
verified. using (814), that
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ji'''(i·.P) -jl"(i'.q) = 0 (C)

and thus the function (42) assumes for k = P and k = q the same values in the interval (Cl). Moreover. if the
interval (C I) reduces to a single-point. one of the following conditions proves to be verified:

(0)

where (I. p. q) denotes a permutation of (1, 2. 3). CondItions (C3) imply

(C4)

thus the interval (el) coincides with one of the two intervals .1," .• o,(q). J<,_,o,(p) that are empty or contain
more than one point. Therefore (el) does not reduce to one single point.

APPENDIX D

If YriJf-<..oj(q)uJt-<..oJ(p) and yEJ[i•. Ij(p)u.f1o. I ,(q) then l'u.p) = jI"<t".q) is possible only if an
extremal point of l'(y. a) [see (B2») is inside the set 9 defined by (B4). In Appendix B it has been shown
that this circumstance may be verified only when tensor Q has at least one multiple eigenvalue [condition (B8)1·
If jf/;./f".co,(q) and YE,/f_co,(q)n.f:_ •. ol(p) or YE.ft.• o,(p)n.f! .• oJ(q) or YEJf_coJ(q)nJro.Ij(P)
or YE,;rt· r.U,(p) n ./,0. '1(p). points of intersection are not possible. If YE,;r: _d,(q) n .f;.".o,(p) the equality

(Dl)

becomes:

(D2)

Condition (02) implies that tensor Q either has one multiple eigenvalue or:

(m)

Taking into account (03) and (1114) [see also (42)1. the li,llowing ine4uality is readily ohtained:

(D4)


